

SOLUTIONS OF SOLUTION & COLLIGATIVE PROPERTIES

EXERCISE # 1

PART - I

B-1. Equivalent of HCl per ml = $\frac{0.0365}{36.5} = 0.001$ eq. (eq. wt. of HCl = 36.5)

∴ Normality of HCl = eq. of HCl per 1000 ml = 1 N

∴ Normality of NaOH = 1 N

∴ gram per 1000 ml of NaOH = normality × eq. wt. = $1 \times 40 = 40$ (eq. wt. of NaOH = 40)

∴ concentration of NaOH solution in g/ml = 0.04 g/ml (Ans. 0.04 g)

B-2. (i) Let us consider one litre of $\text{Na}_2\text{S}_2\text{O}_3$ solution.

∴ wt. of the solution = density × volume (ml) = $1.58 \times 1000 = 1580$ gram

wt. of $\text{Na}_2\text{S}_2\text{O}_3$ present in 1 litre of the solution = molarity × mol. Wt = $3 \times 158 = 474$ gram

$$\text{wt \% of } \text{Na}_2\text{S}_2\text{O}_3 = \frac{474}{1580} \times 100 = 30\% \quad \text{(Ans. 30\%)}$$

(ii) wt. of solute ($\text{Na}_2\text{S}_2\text{O}_3$) = 474 gram

$$\text{moles of solute} = \frac{474}{158} = 3$$

$$\text{wt. of solvent (H}_2\text{O}) = 1580 - 474 = 1106 \text{ gram, moles of solvent} = \frac{1106}{18} = 61.444$$

$$\therefore \text{mole fraction of } \text{Na}_2\text{S}_2\text{O}_3 = \frac{3}{3 + 61.44} = 0.046 \quad \text{(Ans. 0.046)}$$

$$\text{(iii) Molality of } \text{Na}_2\text{S}_2\text{O}_3 = \frac{\text{moles of } \text{Na}_2\text{S}_2\text{O}_3}{\text{wt. of solvent in grams}} \times 1000 = \frac{3}{1106} \times 1000 = 2.71 \text{ m}$$

∴ 1 mole of $\text{Na}_2\text{S}_2\text{O}_3$ contains 2 moles of Na^+ ions and 1 mole of $\text{S}_2\text{O}_3^{2-}$ ions.

$$\therefore \text{molality of } \text{Na}^+ = 2 \times 2.71 = 5.42 \text{ m} \quad \text{(Ans. } \text{Na}^+ = 5.42 \text{ m})$$

$$\text{molality of } \text{S}_2\text{O}_3^{2-} = 2.71 \text{ m} \quad \text{(Ans. } \text{S}_2\text{O}_3^{2-} = 2.71 \text{ m})$$

B-3. Suppose that the solution contains 100 ml of each variety of H_2SO_4 . Total solution is, 200 ml or 0.2 litre
wt. of 100 ml of H_2SO_4 solution (30%) = $1.20 \times 100 = 120$ gram
and wt. of 100 ml of H_2SO_4 solution (70%) = $1.60 \times 100 = 160$ gram

$$\text{wt. of } \text{H}_2\text{SO}_4 \text{ (30\%)} = 120 \times \frac{30}{100} = 36 \text{ gram}$$

$$\text{wt. of } \text{H}_2\text{SO}_4 \text{ (70\%)} = 160 \times \frac{70}{100} = 112 \text{ gram}$$

$$\text{Total wt. of } \text{H}_2\text{SO}_4 \text{ (solute)} = 36 + 112 = 148 \text{ gram}$$

$$\therefore \text{wt. of } \text{H}_2\text{O} \text{ (solvent)} = \text{wt. of solution} - \text{wt. of solute} \\ = (120 + 160) - 148 = 280 - 148 = 132 \text{ gram}$$

$$\text{Moles of } \text{H}_2\text{SO}_4 = \frac{148}{98} = 1.51 \text{ (mol. wt. of } \text{H}_2\text{SO}_4 = 98)$$

$$\text{Molality} = \frac{1.51}{132} \times 1000 = 11.44 \text{ m}$$

$$\text{Molarity} = \frac{1.51}{0.2} = 7.55 \text{ M}$$

C-1. In 100 ml vessel which contained water - saturated oxygen, the pressure of O_2 gas = $760 - 355 = 405$ torr.

When the contents of this vessel were pumped into 50 ml vessel, at the same temperature, the pressure of oxygen gets doubled i.e. $P_{O_2} = 810$ torr.

But pressure of water vapour will remain constant, as some vapour in this 50 ml vessel, gets condensed.

So $P_{H_2O} = 355$ torr & Total pressure = $810 + 355 = 1165$ torr.

C-2. $P_{N_2} + P_{H_2O(v)} = 1$ atm, $\therefore P_{H_2O} = 0.3$ atm

$$\therefore P_{N_2} = 0.7 \text{ atm}$$

Now new pressure of N_2 in another vessel of volume $V/3$ at same T is given by :

$$P_{N_2} \times \frac{V_1}{3} = 0.7 \times V_1$$

$$\therefore P_{N_2} = 2.1 \text{ atm}$$

Since aqueous tension remains constant, and thus total pressure in new vessel.

$$= P_{N_2} + P_{H_2O} = 2.1 + 0.3 = 2.4 \text{ atm.}$$

$$\mathbf{D-1.} \quad \frac{6.56 \times 10^{-3}}{5 \times 10^{-2}} = \frac{1}{P} \Rightarrow P = 7.62 \text{ bar.}$$

D-2. The solubility of gas is related to the mole fraction in aqueous solution. The mole fraction of the gas in the solution is calculated by applying Henry's law. Thus :

$$x(\text{Nitrogen}) = \frac{p(\text{nitrogen})}{K_H} = \frac{1\text{bar}}{75,000\text{bar}}$$

if n represents number of moles of N_2 in solution,

$$x(\text{Nitrogen}) = \frac{n}{n+300} = \frac{n}{300} = \frac{1\text{bar}}{75,000\text{bar}}$$

(n in denominator is neglected as it is $<< 300$)

Thus $n = 4 \times 10^{-3}$ mol. = 4 mmol

E-1. When the liquid A-water mixture distills, the pressure = 760 mm Hg.

\therefore Partial pressure of A = $760 - 739 = 21$ mm Hg.

$$\text{Mole fraction of A in the distillate} = \frac{21}{760} = 0.02764$$

$$\text{Mole fraction of water in the distillate} = \frac{739}{760} = 0.9723$$

\therefore mass of A in the distillate = $0.02764 \times 123 = 3.399$ g

Mass of water in the distillate = $0.9723 \times 18 = 17.50$ g

$$\text{Mass of steam condensed per g of liquid A} = \frac{17.5}{3.399} = 5.15 \text{ g.}$$

$$\mathbf{E-2.} \quad \frac{n_W}{n_N} = \frac{W_W}{18} \cdot \frac{123}{W_N} = \frac{733}{27} \quad \Rightarrow \quad \frac{W_W}{W_N} = \frac{18 \times 733}{27 \times 123} = 3.973 \text{ Ans.}$$

F-1. In first case, $X_A = \frac{1}{4}$, $X_B = \frac{3}{4}$ & $P_T = 550$

According to Raoult's law,

$$X_A P^0_A + X_B P^0_B = P_T$$

$$\text{so} \quad \frac{1}{4} P^0_A + \frac{3}{4} P^0_B = 550 \quad \text{or} \quad P^0_A + 3P^0_B = 2200 \quad \dots \text{(i)}$$

In second case

$$X'_A = 1/5, X'_B = 4/5 \quad \& \quad P_T = 560$$

$$\therefore \frac{1}{5} P_A^0 + \frac{4}{5} P_B^0 = 560 \quad \text{or} \quad P_A^0 + 4P_B^0 = 2800 \quad \dots \text{(ii)}$$

Subtracting (i) from (ii), we get

$$P_A^0 = 400 \text{ mm, } P_B^0 = 600 \text{ mm of Hg.}$$

F-2. $X_A P_A^0 = P_A = Y_A P_T \quad \text{or} \quad X_A \times 200 = 0.5 P_T = \dots \text{(i)}$

Similarly

$$X_B P_B^0 = P_B = Y_B P_T \quad \text{or} \quad X_B \times 75 = 0.5 P_T = \dots \text{(ii)}$$

Comparing (i) & (ii) we get

$$200 X_A = 75 X_B = 75 (1 - X_A)$$

Solving we get $X_A = 0.2727 \approx 0.273$

so mol percent of A in liquid = 27.3%

F-3. The data provide the following two expressions for total pressure

$$1 = \frac{1}{4} P_A^0 + \frac{3}{4} P_B^0$$

$$\text{or } 4 = P_A^0 + 3P_B^0 \quad \text{and } 1 = \frac{1}{5} P_A^0 + \frac{1}{5} P_B^0 + \frac{3}{5} P_C^0$$

$$\text{or } 4 = P_A^0 + P_B^0 + 2.4$$

on solving these two equations simultaneously, one obtains $P_B^0 = 0.7 \text{ atm}$ and $P_A^0 = 1.9 \text{ atm}$.

F-4. Given $P_{\text{Benzene}}^0 = 753$ & $P_{\text{toluene}}^0 = 290$
 $X_B P_B^0 = Y_B P_T$ i.e. $X_B(753) = 0.3 P_T \dots \text{(i)}$
 $X_t P_t^0 = Y_t P_T$ i.e. $X_t(290) = 0.7 P_T \dots \text{(ii)}$

Dividing (i) by (ii)

$$\frac{X_B(753)}{X_t(290)} = \frac{3}{7} \quad \text{or} \quad \frac{1 - X_t}{X_t} = 0.165$$

$$\therefore X_t = 0.8584 = 85.84\% \quad \text{so} \quad X_B = 14.16\%.$$

F-5. $P(\text{mm Hg}) = 180X_B + 90$

$$P_B^0 (\text{Benzene}) = 180 + 90 (X_B = 1) = 270 \text{ mm Hg}$$

$$P_T^0 (\text{Toluene}) = 90 \text{ mm Hg } (X_B = 0)$$

$$\text{moles of } C_6H_6 = 12, \quad X_B = 0.6$$

$$\text{moles of } C_6H_5CH_3 = 8 \quad X_T = 0.4$$

$$\text{Vapour Pressure of solution} \quad P_S = X_B P_B^0 + X_T P_T^0$$

$$P_S = 198 \text{ mm Hg}$$

$$\text{mole fraction of Benzene in vapour state } Y_B = \frac{P_B}{P_S}$$

$$Y_B = \frac{X_B P_B^0}{P_S} = \frac{0.6 \times 270}{198} = 0.82$$

Mole fraction of Toluene in vapour state

$$Y_T = 0.18$$

Now this vapour when condensed

$$P_S = Y_T P_T^0 + Y_B P_B^0 = 0.18 \times 90 + 0.82 \times 270 = 237.6 \text{ mm Hg.}$$

Now mole fraction of benzene in vapour state is

$$Y'_B = \frac{Y_B P_B^0}{P_S} = \frac{0.82 \times 270}{237.6} \quad \text{Ans. } Y'_B = 0.932.$$

G-1. Chloroform & acetone form a non-ideal solution, in which A....B type interaction are more than A.....A & B.....B type interaction due to H-bonding. Hence, the solution shows, negative deviation from Raoult's Law i.e.,

$$\Delta V_{\text{mix}} = -\text{ve} ; \quad \Delta H_{\text{mix}} = -\text{ve}$$

total volume of solution = less than $(30 + 50 \text{ ml})$
or $< 80 \text{ ml}$

Ans. $V < 80 \text{ ml}$.

G-2. $P_{\text{ideal}} = P^0_{\text{AXA}} + P^0_{\text{BXB}}$;

$$= 100 \times \frac{1}{4} + 80 \times \frac{3}{4} \Rightarrow 85 \text{ mm Hg}$$

$P_{\text{actual}} = 90 \text{ mm Hg}$;

Actual v. pr. is greater than ideal solution v. pr. so +ve deviation from Raoult's law.

H-2. $\text{XY}_2 \rightleftharpoons \text{X}^{2+} + 2\text{Y}^-$

Initially $1 \quad 0 \quad 0$

at equilibrium $1 - \alpha \quad \alpha \quad 2\alpha$

Total no. of moles = $1 - \alpha + \alpha + 2\alpha = 1 + 2\alpha$

$$i = \frac{\text{Normal molar mass}}{\text{Observed molar mass}} ; \frac{1+2\alpha}{1} = \frac{164}{65.6}$$

$$\therefore \alpha = 0.75; \% \alpha = 75\%.$$

I-1. (a) Relative lowering of vapour pressure = mole fraction of solute

$$\frac{23.76 - 22.41}{23.76} = \frac{20/M}{20/M + 100/18} = 0.0568$$

$$\text{so } M = 60 \text{ g/mol}$$

(b) Let w be the mass of solute reqd.

$$\& \quad P = \frac{P^0}{2}$$

$$\text{so } \frac{P^0 - P}{P^0} = \frac{w/60}{w/60 + 100/18} \text{ or } \frac{P^0 - P^0/2}{P^0} = \frac{w/60}{w/60 + 5.56}$$

$$\therefore w = 333.3 \text{ g}$$

I-2. $\text{Ca}(\text{NO}_3)_2 \text{ (aq)} \rightleftharpoons \text{Ca}^{2+} \text{ (aq)} + 2\text{NO}_3^- \text{ (aq)}$

$1 \quad 0 \quad 0$
 $1 - \alpha \quad \alpha \quad 2\alpha$

$$\text{so } i = 1 + 2\alpha = 1 + 2 \times 0.7 = 2.4$$

$$\text{Now } \frac{P^0 - P}{P^0} = i \times X_A \quad \text{or} \quad \frac{760 - P}{760} = 2.4 \times \frac{7/164}{7/164 + 100/18}$$

Solving, we get $P = 746.2 \text{ mm of Hg}$.

J-1. (a) Let the molar mass of the unknown solute is m

Now, for naphthalene solution

$\Delta T_b = K_b = \text{molality}$

$$0.4 = K_b \times \frac{0.5/128}{50/1000} \quad \dots \text{ (i)}$$

for unknown solution

$$0.65 = K_b \times \frac{0.6/m}{50/1000} \quad \dots \text{ (ii)}$$

Dividing eq. (i) by (ii), we get

$$m = 94.5 \text{ Ans.}$$

(b) $\Delta T_b = K_b \text{ molality}$

$$0.100 = 2.16 \times \frac{0.1/m}{16/1000}$$

so $m = 135 \text{ Ans.}$

J-2. $0.2 = 5.12 \left[\frac{\frac{7.32}{244}}{\frac{1000 - x}{1000}} \right]$

$$\Rightarrow 0.2 = 5.12 \left[\frac{30}{1000 - x} \right] \Rightarrow \frac{30}{1000 - x} = \frac{0.2}{5.12}$$

$$\Rightarrow 1000 - x = 768 \Rightarrow x = 232 \text{ g}$$

J-3. Here $K_b = \frac{RT_b^2}{1000L_v} = \frac{2 \times (320)^2}{1000 \times 84} = 2.438$

& $\Delta T_b = K_b \times \text{molality}$

or $0.474 = \frac{2.438 \times 5/m}{100/1000}$

so $m = 257$

Hence no. of S atoms in the sulphur molecule $= \frac{257}{32} \approx 8$

so S_8 is the molecular formula of sulphur in this solvent.

J-4. Experimental $\Delta T = 0.02^\circ$

Theoretical $\Delta T = 1.86 \times 0.01 = 0.0186^\circ$

$$i = \text{van't Hoff factor} = \frac{0.02}{0.0186} = 1.075$$

Degree of dissociation, $\alpha = \frac{i-1}{v-1}$ ($v = \text{no. of species formed on dissociation}$)

$$= \frac{0.075}{2-1} = 0.075$$

% dissociation = 7.5.

K-1. (a) Van't Hoff factor value for urea, NaCl, Na₂SO₄ & Na₃PO₄ are 1, 2, 3 & 4 respectively.
so for equal concentration of all these, order of osmotic pressure will be

Urea < NaCl < Na₂SO₄ < Na₃PO₄

(b) Total concentration after mixing equal volumes of all these solutions will be :

$$C_{\text{Total}} = \frac{\sum i \times C \times V}{\text{Total volume}}$$

$$C_{\text{Total}} = \frac{0.1 \times 1 \times V + 2 \times 0.1 \times V + 3 \times 0.1 \times V + 4 \times 0.1 \times V}{4V} = 0.25$$

Now $P = C_{\text{Total}} \times R \times T = 0.25 \times 0.082 \times 300 = 6.15 \text{ atm Ans.}$

K-2. C = Molarity

$$= \frac{\text{no. of moles of Ca(NO}_3)_2}{\text{Vol. of solution (ml)}} \times 1000 = \frac{3 \times 1000}{164 \times 100} = \frac{30}{164}$$

$\pi = i \cdot C \cdot R \cdot T$

$$11.2 = i \times \frac{30}{164} \times 0.082 \times 285$$

$i = 2.62 = 1 + (3 - 1) \alpha$

$2.62 = 1 + 2\alpha$

$\alpha = 0.81.$

K-3. For isotonic solutions, $i_1 C_1 = i_2 C_2$

$$\text{for } K_2SO_4 \text{ and } NaCl, \quad i_1 \times \frac{17.4 \times 1000}{174 \times 100} = \frac{2 \times 5.85 \times 1000}{58.5 \times 100}$$

$$\text{so} \quad i_1 = 2$$

$$\text{At equilibrium} \quad 1-x \quad \quad \quad 2x \quad \quad x$$

$$\text{or} \quad 1 + 2x = 2$$

$$\text{or} \quad x = \frac{1}{2} = 0.5$$

\therefore 50% ionisation.

K-4. $T_1 = 2^\circ C = 275 \text{ K}$, $P_1 = 500 \text{ mm of Hg} = \frac{500}{760} \text{ atm}$

& $T_2 = 27^\circ C = 300 \text{ K}$, $P_2 = 109.09 \text{ mm} = \frac{109.09}{760} \text{ atm}$

Let C_1 & C_2 be the concentrations for these two cases

$$\text{so} \quad P_1 = C_1 RT_1 \quad \& \quad P_2 = C_2 RT_2$$

$$\text{or} \quad \frac{P_1}{P_2} = \frac{C_1 T_1}{C_2 T_2} \quad \text{or} \quad \frac{C_2}{C_1} = \frac{T_1 P_2}{T_2 P_1} = \frac{275 \times 109.09 / 760}{300 \times 500 / 760} = \frac{1}{5}$$

Since volume is inversely proportional to concentration of $\frac{V_2}{V_1} = \frac{C_1}{C_2} = 5$,

so volume must have been made 5 times.

PART - II

A-1. It is a fact.

A-2. Certain compounds combine with the moisture of atmosphere and are converted into hydroxides or hydrates. Such substances are called hygroscopic. e.g., anhydrous $CuSO_4$, quick lime (CaO), anhydrous Na_2CO_3 etc.

B-1. 10 μg per decilitre

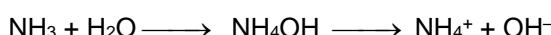
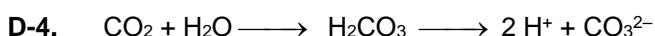
$$\Rightarrow 10 \times 10^{-6} \text{ g in 100 mL}$$

$$\therefore 10^9 \text{ parts (1 billion) has} = \frac{10 \times 10^{-6}}{100} \times 10^9 \text{ g} = 100 \text{ g}$$

C-1. (B) V.P. does not depends on surface area of liquid. (it depends on temperature).

C-2. (A) V.P. depends on temperature.

C-3. (B) Non volatile substance has no V.P.



C-4. (B) Atmospheric pressure is low.

D-1. Solubility increases with decrease in temperature. But solubility increases with increase in pressure according to Henry's Law.

D-2. Henry's law is $m = K \cdot P$; where m = mass of gas absorbed by given volume of the solvent.

P = pressure of gas ;

$$\therefore \log m = \log K + \log P$$

But CH_4 and H_2 are insoluble gases in water.

D-5. Solubility \propto pressure

$$\frac{S_2}{S_1} = \frac{P_2}{P_1}$$

$$S_2 = 5.3 \times 10^{-4} \times \frac{760}{593} = 6.8 \times 10^{-4} \text{ M}$$

E-1. For two immiscible liquid ;

$$P_A^0 = P_{\text{total}} - P_{\text{H}_2\text{O}}^0 = 748 - 648 \Rightarrow 100$$

$$\frac{W_A}{W_B} = \frac{P_A^0 M_A}{P_B^0 M_B} ; M_A = \frac{1.25}{1} \times \frac{648 \times 18}{100} \Rightarrow 145.8$$

F-2. $P = P_A^0 x_A + P_B^0 x_B \Rightarrow 100 \times \frac{1}{5} + 200 \times \frac{4}{5}$

$$\Rightarrow 180 \text{ torr}$$

$$y_A \text{ (composition of A in vapour phase)} = \frac{P_A^0 x_A}{P}$$

$$\Rightarrow \frac{20}{180} \Rightarrow \frac{1}{9}, Y_B = \frac{8}{9}$$

$$\text{For condensation } y_A = x_A^1 ; y_B = x_B^1$$

$$P_{\text{total}} = P_A^0 x_A^1 + P_B^0 x_B^1 ;$$

$$P_{\text{total}} = 100 \times \frac{1}{9} + \frac{8}{9} \times 200 \Rightarrow 188.88 \text{ torr}$$

F-3. As $X_A \rightarrow 1$. Then we will have pure methanol so $P_T = 120 X_A + 140 = 120 + 140 = 260 \text{ mm of Hg.}$

F-4. $760 = 300 X_A + 800 (1 - X_A)$

$$\Rightarrow 760 = 800 - 500 X_A$$

$$\Rightarrow 500 X_A = 40$$

$$\therefore X_A = \frac{40}{500} = 0.08.$$

F-5. $X_A = \frac{1}{1+3} \Rightarrow \frac{1}{4} ; X_B = \frac{3}{4} ;$

$$\frac{y_A}{y_B} = \frac{P_A^0}{P_B^0} \times \frac{x_A}{x_B}$$

$$\frac{y_A}{(1-y_A)} = \frac{1}{3} \times \frac{1}{3} \Rightarrow \frac{1}{9} \text{ or } y_A = \frac{1}{10}$$

G-1. $P_{\text{Total}} = 0.4 \times 80 + 0.6 \times 120 = 104 > 100 \text{ mm of Hg.}$

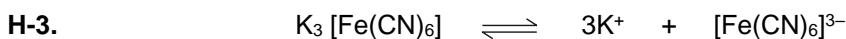
G-2. It shows negative deviation from Raoult's law

$$p_s \text{ (actual)} = 580 \text{ torr}$$

$$p_s \text{ (Raoult)} = 0.4 \times 300 + 0.6 \times 800 = 600 \text{ torr.}$$

G-3. Due to H-bonding

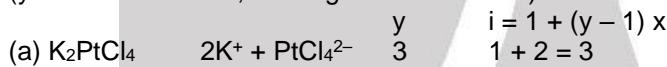
G-4. Some solids dissolves exothermically as LiCl ($\Delta H = -\text{ve}$) and other dissolved endothermically as KCl ($\Delta H = +\text{ve}$). Solvent-solvent interaction and solute-solute interaction are endothermic while solvent-solute interaction is exothermic. The sum of the three interaction determines whether ΔH_{sol} is endothermic or exothermic.



G-5. Solvent-solvent interaction and solute-solute interaction are endothermic while solvent-solute interaction is exothermic. The sum of the three interaction determines whether ΔH_{sol} is endothermic as exothermic.

G-6. (C) for a ideal solution $\Delta G_{\text{mix}} < 0$.

$$\text{H-1. } i = \frac{C(1-\alpha) + \frac{C\alpha}{n}}{C} \Rightarrow i = 1 - \alpha + \frac{\alpha}{n}$$


$$\text{H-2. } i = 1 + (n-1)\alpha \quad \text{so} \quad n = \frac{i + \alpha - 1}{\alpha}$$

$$\text{Since, } i = \frac{M_{\text{normal}}}{M_{\text{abnormal}}}$$

$$\therefore \frac{1+3\alpha}{1} = \frac{M_{\text{normal}}}{M_{\text{abnormal}}}$$

H-4. $i = \text{van't Hoff factor} = 1 + (y - 1) x$
(y = number of ions, x = degree of ionisation)

In (a) oxidation number of Pt = 2; In (b) oxidation number of Pt = 4

I-1. Acc. of Rault's law $P = P_A + P_B$
for non volatile solute $= P_B = 0$

$$P_s = P_A$$

$$P_s = P_A^0 X_A \quad X_A = \text{mole fractions of solvent} = N_1$$

$$\text{so} \quad P = P_0 N_1 \quad P_A^0 = P_0.$$

$$\text{I-2. } \text{RLVP} = \frac{\text{in}}{\text{in} + N}$$

$$\text{so} \quad 0.167 = \frac{2 \times n}{2n + \frac{180}{18}}$$

$$\text{so} \quad n = 1$$

$$\text{I-3. } \frac{268 - 167}{167} = x \Rightarrow \text{So} \quad x = 0.605.$$

$$\text{I-4. } \text{RLVP} = \frac{i \quad n_{\text{NaCl}}}{i \quad n_{\text{NaCl}} + n_{\text{H}_2\text{O}}} \quad ; \quad 0.4 = \frac{i}{i+3}$$

$$\text{so} \quad i = 2$$

$$\therefore i = 1 + \alpha \text{ so } \alpha = 1 \text{ or } 100\%$$

I-5. According to question $P_s = 0.95 P_0$
 according to Raoult's law $P_s = P_0 X_A$ given $M_A = 0.3 M_B$

$$0.95 P_0 = P_0 \left(\frac{\frac{W_A}{M_A}}{\frac{W_A}{M_A} + \frac{W_B}{M_B}} \right)$$

M_A = molecular wt. of solvent

M_B = molecular wt. of solute

$$0.95 = \frac{\frac{W_A}{0.3 M_B}}{\frac{W_A}{0.3 M_B} + \frac{W_B}{M_B}}$$

W_A = gram wt. of solvent

$$\text{on solving } \frac{W_A}{W_B} = 5.7.$$

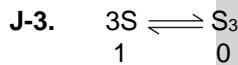
W_B = gram wt. of solute

I-6. $\frac{\Delta P}{P} = \frac{ni}{ni + N}$

$$0.5 = \frac{2i}{2i + 3}$$

$$i + 1.5 = 2i$$

$$i = 1.5$$

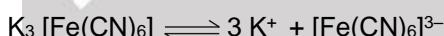

$$i = 1 + (y - 1)\alpha$$

$$1.5 = 1 + (2 - 1)\alpha$$

$$\alpha = 0.5$$

$$\text{mole of } Cl^- = 1.0$$

$$\text{mole of AgCl ppt.} = 1.0 \quad \text{Ans. (A)}$$


$$1 - \alpha \frac{\alpha}{3} \Rightarrow i = 1 - \frac{2\alpha}{3}$$

$$\text{Now } 0.1 \left(1 - \frac{2\alpha}{3}\right) = 0.08$$

$\Rightarrow \alpha = 0.3$. Hence 30% trimerization.

J-4. $\Delta T_b = ik_b m$

$$\text{so } i = \frac{2.08}{0.52 \times 1} = 4 \text{ so the complex is } K_3 [Fe(CN)_6]$$

J-5. $\Delta T_f = i \times m \times k_f$

$$i = \frac{3.72}{1.86 \times 1} = 2$$

So salt is $(Pt(H_2O)_3 Cl_3) Cl \cdot 3H_2O$.

J-6. Boiling point of solution = boiling point + $\Delta T_b = 100 + \Delta T_b$

Freezing point of solution = freezing point - $\Delta T_f = 0 - \Delta T_f$

Difference in temperature (given) = $100 + \Delta T_b - (-\Delta T_f)$

$$104 = 100 + \Delta T_b + \Delta T_f = 100 + \text{molality} \times K_b + \text{molality} \times K_f = 100 + \text{molality} (0.52 + 1.86)$$

$$\therefore \text{Molality} = \frac{104 - 100}{2.38} = \frac{4}{2.38} = 1.68 \text{ m}$$

and molality = $\frac{\text{moles} \times 1000}{W_{\text{gm}} \text{ (solvent)}}$; $1.68 = \frac{\text{moles} \times 1000}{500}$

$$\therefore \text{Moles of solute} = \frac{1.68 \times 500}{1000} = 0.84 \text{ moles.}$$

J-7. Higher freezing point \Rightarrow lesser $\Delta T_f \Rightarrow$ lesser molality \Rightarrow lesser number of particles

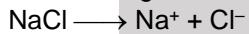
J-8. (i) $\Delta T_f = m \times K_f$

$$0.2 = \frac{X \times 1000}{100} \times 1.86 \quad X = \frac{0.2}{10 \times 1.86}$$

after freezing

$$\Delta T_f = m \times K_f$$

$$\Delta T_f = \frac{X \times 1000}{(100 - y)} \times 1.86 \quad \Delta T_f = 0.25$$


On solving, Amount of ice $y = 20 \text{ g ice}$

J-9. $\Delta T_b = K_b \cdot m \cdot i$

In 100 g of solution

$$\text{moles of NaCl} = 0.1 \quad (\alpha = 0.8)$$

$$\text{moles of MgCl}_2 = 0.1 \quad (\alpha = 0.5)$$

$$i_{\text{NaCl}} = 1 + (2 - 1) 0.8 = 1.8$$

$$\text{Effective no. of moles of NaCl} = 0.1 \times 1.8 = 0.18$$

$$i_{\text{MgCl}_2} = 1 + (3 - 1) 0.5 = 2$$

$$\text{Effective no. of moles of MgCl}_2 = 0.1 \times 2 = 0.2$$

$$\text{Total no. of mole} = 0.18 + 0.2 = 0.38$$

$$\Delta T_b = \frac{0.38}{84.65} \times 1000 \times 0.51 = 3.8 \times 0.51 = 2.28$$

$$\text{So, } T_b = 100 + 2.28 = 102.28 \approx 102.3$$

K-1. $p = \text{CRT}$ order of conc is urea > glucose > sucrose

K-2. $\pi = \text{CRT} \quad 7.40 = n \times 0.0821 \times 300$

$$\pi = \frac{n}{v} RT \quad n = \frac{7.4}{0.0821 \times 300} = 0.3.$$

K-3. Osmotic pressure = CRT = $0.30 \times 0.082 \times 298 = 7.34 \text{ atm}$

$$\pi_I = 2R \times 300 \times \left(1 + \left(\frac{1}{2} - 1\right)\right) = 300 R$$

$$\pi_{II} = 0.5 R \times 300 \times 2 = 300 R$$

PART - III

2. (A) Acetone + CHCl_3 \rightarrow ve deviation from Raoult's law $\Delta S > 0$

$$\Delta H < 0 \quad \Delta V < 0$$

Maximum Boiling Azeotropes.

(B) Ethanol + Water

\rightarrow ve Deviation from Raoult's law $\Delta S > 0$

$$\Delta H > 0 \quad \Delta V > 0$$

Minimum Boiling Azeotropes

(C) $\text{C}_2\text{H}_5\text{Br} + \text{C}_2\text{H}_5\text{I}$

Ideal solution No Azeotropes

$$\Delta H = 0 \quad \Delta V = 0$$

(D) Acetone + Benzene

\rightarrow ve Deviation from Raoult's law

$$\Delta H > 0 \quad \Delta V > 0$$

Minimum Boiling Azeotropes

EXERCISE # 2

PART - I

1. Let V_{ml} be the original volume of the sample,

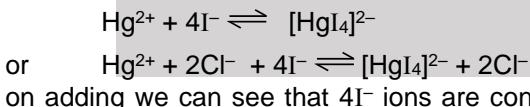
$$\therefore 0.20 = \frac{0.150}{V/1000} \Rightarrow V = 750 \text{ ml.}$$

2. Molarity = $\frac{0.967/159.5}{20/1000}$ $\left\{ \begin{array}{l} \text{Mol.wt.of CuSO}_4 \\ 159.5 \end{array} \right\}$
= 0.303 M

3. Vapour pr. depends on temperature not volume.

4. Pressure of air = $750 - 100 = 650$ mm of Hg
on compressing $P_f = Hg \ 650 \times 3$ mm of Hg = 1950 mm of Hg
so $P_T = (1950 + 100) = 2050$ mm of Hg

5. $\frac{W_A}{W_B} = \frac{P_A^0}{P_B^0} \times \frac{M_A}{M_B} \Rightarrow \frac{0.7}{7} \times \frac{112.5}{18} \Rightarrow 0.625$
% $\frac{W_A}{W_A + W_B} \times 100 = \frac{0.625}{1.625} \times 100 \Rightarrow 38.46$


6. $P_T = P_A^0 + P_B^0 = 100 + 200 = 300$ torr

8. According to Raoult's law
 $P_T = (0.08 \times 300 + 0.92 \times 800)$ torr = (24 + 736) torr = 760 torr = 1 atm
 $P_{exp.} = 0.95$ atm < 1 atm
Hence solution shows -ve deviation
so $\Delta H_{mix} < 0$, and $\Delta V_{mix} < 0$.

9. $i = 1 + \alpha (n - 1)$ or $4 = 1 + 0.75 (n - 1)$
 $\therefore n = 5$, so complex will be $Ba_3 [Co(CN)_5]_2$.

10. Less is the no. of moles of solute present in the solution, Less is the lowering in vapour pressure, here least no of moles are of sucrose.

11. Due to this addition a complex $[HgI_4]^{2-}$ will get formed as follows

12. $x + y = 0.1$

$$\Delta T_f = \frac{x + x + y + 2y}{1000} \times 1000 \times 1.85$$

if only KCl is used then

$$\Delta T_f = \frac{0.2}{1000} \times 1000 \times 1.85 = 0.37$$

if only $BaCl_2$ is used then

$$\Delta T_f = 0.3 \times 1.85 = 0.555$$

13. Semipermeable membrane allows the solvent particles only to pass through it.

14. Mole of solute in first beaker = $\frac{0.05 \times 20}{1000} = 0.001$

mole of solute (Na^+ & Cl^-) in other beaker = $\frac{2 \times 0.03 \times 20}{1000} = 0.0012$

conc. of 2nd beaker is higher than 1st beaker so water flows from 1st beaker to 2nd beaker till both beaker achieved equal conc. let v volume of water flows from 1st to 2nd beaker

so $\frac{0.001}{20-v} = \frac{0.0012}{20+v}$

$v = 1.8 \text{ ml}$

volume of 1st beaker = $20 - 1.8 = 18.2 \text{ ml}$

volume of 2nd beaker = $20 + 1.8 = 21.8 \text{ ml}$.

PART - II

1. It is a case of dilution, simplest way is to determine normality of the 98% and 15% H_2SO_4 .

(i) For 98% H_2SO_4 : 100 g H_2SO_4 solution = $\frac{100}{1.88} \text{ cm}^3$ solution has $\text{H}_2\text{SO}_4 = 98 \text{ g}$

$$N_1 (98\%) = \frac{1000 \times w_1}{E_1 V} = \frac{1000 \times 98}{49 \times \frac{100}{1.88}} = 37.6 \text{ N}$$

where w_1 is the weight of solute of equivalent weight E_1 in $V \text{ mL}$ solution

(ii) For 15% H_2SO_4 : 100 g H_2SO_4 solution = $\frac{100}{1.12} \text{ cm}^3$ has $\text{H}_2\text{SO}_4 = 15 \text{ g}$

$$N_2 (15\%) = \frac{1000 \times w_1}{E_1 V} = \frac{1000 \times 15}{49 \times \frac{100}{1.12}} = 3.43$$

Using

$$N_1 V_1 = N_2 V_2$$

$$37.6 \times V_1 = 3.43 \times 200$$

$$V_1 = 18.2 \text{ mL}$$

2. 40 mL O_3 dissolve in 100 g water at 300 K and 1 atm

40 \times 4 mL O_3 dissolve in 400 g water at 300 K and 1 atm

$\therefore m \propto P$ so $(40 \times 4) \times 4 \text{ mL } \text{O}_3$ dissolve in 400 g water at 300 K and 4 atm

$$n_{\text{O}_3} \text{ dissolve} = \frac{4 \times 640 \times 10^{-3}}{0.0821 \times 300} = 0.1 \quad \text{or} \quad \text{mass of } \text{O}_3 = 4.8 \text{ g.}$$

3. According to Raoult's law for liquid mixtures $P = P_A + P_B$

$$P = P_A^0 \times \frac{\frac{w_A}{M_A}}{\frac{w_A}{M_A} + \frac{w_B}{M_B}} + P_B^0 \times \frac{\frac{m_B}{M_B}}{\frac{w_A}{M_A} + \frac{w_B}{M_B}}$$

Given that,

$$w_A = 64 \text{ g} \quad w_{\text{H}_2\text{O}} = 36 \text{ g} \quad P_M = 145 \text{ mm}$$

$$P_{\text{H}_2\text{O}} = 155 \text{ mm} \quad M_A = 128 \quad M_{\text{H}_2\text{O}} = 18$$

$$P = 145 = P_A^0 \times \frac{\frac{64}{128}}{\frac{64}{128} + \frac{36}{18}} + \frac{\frac{36}{18}}{\frac{64}{128} + \frac{36}{18}}$$

$$P_A^0 = 105 \text{ mm} \Rightarrow \frac{P_A^0}{5} = 21$$

4. We can write immediately : $1(\text{atm}) = 0.2 P_A^0 + 0.8 P_B^0$ and, further

$$1 = 0.2 \times \frac{P_B^0}{2} + 0.8 P_B^0 \text{ so } P_B^0 = \frac{1}{0.9} = 1.11 \text{ atm. } P_A^0 \text{ must then be } 0.55 \text{ atm.}$$

$$\Rightarrow 2 \times P_A^0 = 1.10$$

5. A and B are volatile liquids, given $P_A^0 = 575 \text{ Torr}$, $P_B^0 = 390 \text{ Torr}$

let mole fraction of A in solution = X_A

$$\text{hence, } P_{\text{total}} = P_A^0 X_A + P_B^0 (1 - X_A)$$

also $X_A' = \text{mole fraction of A in the vapour} = 0.35$

$$X_A' = \frac{P_A^0 X_A}{P_A^0 X_A + P_B^0 (1 - X_A)} = 0.35$$

$$= \frac{575 X_A}{575 X_A + 390 (1 - X_A)}$$

this gives $X_A = 0.27$

Composition of liquid mixture, A = 27 mol %, B = 73 mol %.

7. Positive deviation = I, II, III, IV, V, IX

Negative deviation = VI, VIII

8. $T = 87 + 273 = 360 \text{ K}$

$$\Pi_{\text{Theoretical}} = \frac{0.1}{2} \times \frac{1}{12} \times 360 = 1.5 \text{ atm.}$$

$\Pi_{\text{observed}} = 3 \text{ atm}$

$$\Rightarrow i = \frac{3}{1.5} = 2 \Rightarrow i = \frac{M_T}{M_{\text{ob}}}$$

$$\Rightarrow M_{\text{observed}} = \frac{M_T}{i} = \frac{24 + 2 \times 32}{2} = 12 + 32 = 44 \Rightarrow 44 + 2i = 44 + 2 \times 2 = 48$$

9. Let P^0 be the vapour pressure of water, now if relative humidity is 80% after dissolving $\text{C}_{12}\text{H}_{22}\text{O}_{11}$, then the new pressure of solution will be P (let).

$$\text{so } \frac{P}{P_0} = 0.8 \quad \text{or} \quad P = 0.8 P_0$$

$$\text{Now } \text{Relative lowering of pressure} = \frac{P_0 - P}{P_0} = X_A$$

$$\text{So } \frac{P_0 - 0.8P_0}{P_0} = \frac{\frac{x}{342}}{\frac{x}{342} + \frac{90}{18}} \quad \{ \text{Let } x \text{ be the wt. of } \text{C}_{12}\text{H}_{22}\text{O}_{11} \text{ dissolved} \}$$

$$\therefore x = 427.5 \text{ g.}$$

10. $\Delta T_b = K_b \times m$

$$0.13 = 2.6 \times \frac{1.22/M}{0.1}$$

$$\therefore M = 244 \text{ u}$$

∴ Reported answer = 2

$$11. \frac{1}{M_{\text{acid}}} = \frac{125}{1000} \times 0.1 \Rightarrow M_{\text{acid}} = 80 \text{ g mol}^{-1}$$

$$0.186 = (1 + \alpha) \times 1.86 \times \left[\frac{1}{\frac{80}{0.2}} \right] \Rightarrow \alpha = 0.6 \Rightarrow 60 \text{ percent}$$

12. 1.2% solution (wt./vol) of glucose is isotonic with 4 g/litre of solution of X at 27°C, so

$$C_1 = C_2$$

$$\frac{1.2 \times 1000}{180 \times 100} = \frac{4}{M_X}$$

so $M_X = 60$ g/mole.

13. Let M_A and M_B are the molar masses of A & B respectively when 10 g of A and 20 g of B are both

dissolved in 500 ml of water, then concentration of this solution will be $C_1 = \left(\frac{10}{M_A} + \frac{20}{M_B} \right) \times \frac{1000}{500}$ moles/lit.

In second case, when 6.67 g of A and 30 g of B are dissolved in same volume of water then concentration of this solution will be $C_2 = \left(\frac{6.67}{M_A} + \frac{30}{M_B} \right) \times \frac{1000}{500}$ M.

As both solution have same osmotic pressure at same temperature.

$$\begin{aligned} \pi_1 &= \pi_2 \\ C_1 RT &= C_2 RT \\ C_1 &= C_2 \quad \text{or} \quad \frac{M_A}{M_B} = \frac{1}{3} \end{aligned}$$

PART - III

1. Initial moles of KCl = $\frac{100}{1000} \times 0.1 = 0.01$

Let x moles of KCl are added, so

$$0.2 = \frac{0.01+x}{100/1000} \text{ or } x = 0.01$$

2. Molality, Molarity, Percent by mass and Normality all can be related to mole fraction (by using density).

3. Temperature ↑, vapour pressure ↑.

$$P_{\text{gas}} = K_{\text{gas}} \cdot X_{\text{gas}}$$

So, Temperature ↑, $K_{\text{gas}} \uparrow$, $X_{\text{gas}} \downarrow$

5. a↑, Force of attraction↑, Liquifaction↑, Solubility↑, So gas form ion are more soluble.

6. $p_x^0 + p_y^0 = \text{Total vapour pressure}$ (as X and Y are perfectly immiscible)
 $400 + 200 = 600$ Torr.

7. For ideal solutions :

$$\begin{aligned} \Delta V_{\text{mix}} &= 0 & \text{and} & \Delta H_{\text{mix}} = 0 \\ \Delta S_{\text{mix}} &= -\text{ve} \end{aligned}$$

8. $P = 119x + 135$

x = 1 for pure methanol.

$$\text{so } P^0_{\text{methanol}} = 119 + 135 = 254 \text{ Torr}$$

But for pure ethanol x = 0

$$\text{so } P^0_{\text{ethanol}} = 135 \text{ Torr}$$

9. When mixture is more volatile, total pressure increases so there is a positive deviation from Raoult's law, and vice-versa.

10. $X_A P_A^0 + X_B P_B^0 = 0.25 \times 512 + 0.75 \times 344 = 386 \text{ mm}$
 Now $P_A + P_B = 600 \text{ mm Hg}$ (Given)
 so $P_A + P_B > X_A P_A^0 + X_B P_B^0$
 therefore, there is positive deviation from Raoult's law
 $\Delta H > 0$ i.e., heat is absorbed.

11. $A_x B_y \rightleftharpoons x A^{y+} + y B^{x+}$
 Initial moles n o o
 At eq b. $n(1-\alpha)$ $nx\alpha$ $ny\alpha$
 $i = \frac{\text{Total mol at equilibrium}}{\text{Initial mol}} = \frac{n[(1-\alpha) + x\alpha + y\alpha]}{n}$

$$i = (1 - \alpha) + x\alpha + y\alpha$$

It can also be seen that all other expressions imply the same thing.

$$(A) \alpha = \frac{i-1}{x+y-1} \quad (B) i = (1 - \alpha) + x\alpha + y\alpha. \quad (C) \frac{1-i}{1-x-y}$$

12. Number of particles from $K_4[Fe(CN)_6] = 5$
 number of particles from $FeSO_4(NH_4)_2SO_4 \cdot 6H_2O = 5$
 number of particles from $KCl \cdot MgCl_2 \cdot 8H_2O = 5$

13. $\frac{\Delta P}{P_s} = \frac{2/MM}{100/50} = \frac{T}{MM} \Rightarrow \frac{0.5}{75} = \frac{1}{MM} \Rightarrow MM = 150$
 If formula is $C_x H_y$, then $\frac{12x}{150} \times 100 = 96$
 $\Rightarrow x = 12 \text{ and } \frac{y}{150} \times 100 = 4. \text{ so, } y = 6$

14. In solution, lesser number of solvent molecules have tendency to form vapour. Only solvent molecule undergo phase transition.

15. As concentration values are same for all solutions, so osmotic pr. will depend on van't Hoff factor (i).

	I	II	III	IV
glucose (aq.)	1	2	4	Benzoic acid in benzene
Value of i	1	2	4	0.5

more the value of i, more is the osmotic pressure.

16. Ideal gas equation, $PV = nRT$
 Solute particle is similar as gas molecule.

PART - IV

1. Given, $P_M = 179 X_B + 92$
 For pure C_6H_6 ; X_B i.e., mole fraction of benzene = 1
 $\therefore P_B^0 = 179 + 92 = 271 \text{ mm}$
 For pure C_7H_8 ; $X_B = 0$
 $\therefore P_T^0 = 179 \times 0 + 92 = 92 \text{ mm}$

2. $X_B = \frac{\frac{936}{78}}{\frac{936}{78} + \frac{736}{92}} = \frac{12}{12+8} = 0.6$
 $P_M = 179 \times 0.6 + 92 = 107.4 + 92 = 199.4 \text{ mm}$

3. B, C and D are the conditions and facts for positive deviation from Raoult's law.
(A) is incorrect.
Because A-B attractive force should be weaker than A-A and B-B attractive forces.

4. $X_A P_A^0 + X_B P_B^0 = \frac{1}{4} \times 100 + \frac{3}{4} \times 60 = 70 \text{ mm of Hg}$

Now $P_A + P_B > X_A P_A^0 + X_B P_B^0$

i.e., positive deviation from Raoult's law.

for positive deviation, B.P. < expected value

$$F_{A...B} < F_{A...A}$$

$$F_{A...B} < F_{B...B}$$

5. $\pi = MRTi$
Hence,
 $\Delta T_b = mK_b i, \quad \Delta T_f = mK_f \times i$

6. (1) $0.74 = \frac{0.0821}{250 \times 10^{-3}} \times 300 \left(\frac{x}{60} + \frac{1-x}{180} \right)$

$$x = 0.176$$

$$\% \text{ urea} = \frac{0.176}{1} \times 100 = 17.6$$

(2) $\frac{dP}{P} = X_{\text{solute}} = \frac{\frac{0.176}{60} + \frac{0.824}{180}}{\frac{0.176}{60} + \frac{0.824}{180} + \frac{250}{18}} = 5.4 \times 10^{-4}$

(3) $\Delta T_b = mK_b = \left(\frac{0.176}{60} + \frac{0.824}{180} \right) \times \frac{1000}{250} \times 0.5 = 0.015$

$$\Delta T_b = 100.015.$$

7. Hexane + Heptane \rightarrow ideal solution correct code for ideal solution are \rightarrow (i) (a), (P)

8. water + ethanol \rightarrow non ideal solution with +ve deviation correct code for this solution are (ii), (iv), b, c, d, S

9. water + H_2SO_4 \rightarrow non ideal solution with -ve deviation correct codes for this solution are (iii), iv, b, c, R

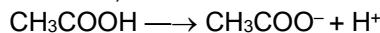
10. (iv) (d) (Q) is a correct match.

EXERCISE # 3

PART - I

1. The freezing point of a solvent depresses as a non-volatile solute is added to a solvent. According to Raoult's law, when a non-volatile solute is added to a solvent the vapour pressure of the solvent decreases. At freezing point it will be only the solvent molecules which will solidify.

2. Van't Hoff factor, $i = 1 + (n - 1) \alpha$
Here $n = 3$
So, $2.74 = 1 + (3 - 1) \alpha$
So, $\alpha = 0.87$ i.e. 87%


3. Weight of water = $500 \times 0.997 = 498.5$ g

$$\text{No. of moles of acetic acid} = \frac{\text{Wt. of } \text{CH}_3\text{COOH} \text{ (in gm)}}{\text{Mol.wt.of } \text{CH}_3\text{COOH}} = \frac{3 \times 10^{-3} \times 10^3}{60} = 0.05$$

Since 498.5 g of water has 0.05 moles of CH_3COOH

$$1000 \text{ g of water has} = \frac{0.05 \times 1000}{498.5} = 0.1$$

Determination of van't Hoff factor, i

$$\begin{array}{ccccc} \text{No. of moles at start} & 1 & 0 & 0 \\ \text{No. of moles at equib.} & 1 - 0.23 & 0.23 & 0.23 \end{array}$$

$$\Delta T_f = (1 - 0.23 + 0.23 + 0.23) \times 1.86 \times 0.1 = 0.228 \text{ K}$$

4. Only solvent molecule undergoes solidification. So liquid solvent and solid solvent remain in equilibrium.

5. $(\pi_{\text{obs}})_{\text{Na}_2\text{SO}_4} = \pi_{\text{glucose}}$

$$\begin{aligned} \text{or } \frac{10}{4} &= \frac{1+2\alpha}{1} & \text{or } 10 &= 4 + 8\alpha \\ \alpha &= \frac{10-4}{8} = 0.75 & \% \text{ of } \alpha &= 75\% \end{aligned}$$

6. (i) In first case,

$$\begin{aligned} \Delta T_b &= K_b \times m = K_b \times \frac{\text{Wt. of solute}}{\text{Mol. wt. of solute}} \times \frac{1000}{\text{wt. of solvent}} \\ \text{or } 0.17 &= 1.7 \times \frac{1.22}{M \times 100 \times 10^{-3}} & \text{or } M &= 122 \text{ g/mole} \end{aligned}$$

Thus the benzoic acid exists as a monomer in acetone

(ii) In second case,

$$\begin{aligned} \Delta T_b &= K_b \times \frac{\text{Wt. of solute}}{\text{Mol. wt. of solute}} \times \frac{1000}{\text{wt. of solvent}} \\ \text{or } 0.13 &= 2.6 \times \frac{1.22}{M \times 100 \times 10^{-3}} & \text{or } M &= 224 \end{aligned}$$

Double molecular weight of benzoic acid (244) in acetone solution indicates that benzoic acid exists as a dimer in acetone.

7. $\Delta T_b = i K_b m$ i (van't Hoff factor) of $\text{CuCl}_2 = 3$

$$\Delta T_b = 3 \times 0.52 \times \frac{13.44}{134.4 \times 1} = 0.156 = 0.16.$$

$$8. \Delta T_f = i \times K_f \times \text{molality} \Rightarrow 2 = i \times 1.72 \times \frac{20}{172} \times \frac{1000}{50}$$

$$\Rightarrow 2 = 4i$$

$$\Rightarrow i = 1/2 = 0.5$$

9. $\Delta T_f = K_f \cdot m$

$$= 2 \times \frac{0.1}{0.9 \times 46} \times 1000 = \frac{2000}{414} = \frac{1000}{207} = 4.83$$

$$\Delta T'_f = T_f - 4.83$$

$$\Delta T'_f = 155.7 - 4.83$$

$$\Delta T'_f = 150.9 \text{ K}$$

10. Total vapour pressure

$$P = P^0_A X_A \text{ (considering solute to be non-volatile as given in the question)}$$

$$P = 40 \times 0.9 = 36 \text{ mm Hg}$$

 11. $\Delta T_b = K_b \cdot m$

$$= 0.52 \times \frac{0.1}{0.9 \times 18} \times 1000 = \frac{520}{9 \times 18} = 3.20$$

$$T_b = 373 + 3.20$$

$$T_b = 376.2 \text{ K}$$

 12. $P_{N_2} = K_H \times x_{N_2}$

$$x_{N_2} = \frac{1}{10^5} \times 0.8 \times 5 = 4 \times 10^{-5} \text{ per mole}$$

 In 10 mole solubility is 4×10^{-4} .

$$13. \Delta T_f = i \times K_f \times m = 4 \times 1.86 \times \frac{0.1}{329 \times 0.1} = 2.3 \times 10^{-2}$$

$$\Rightarrow T_f = 0 - 2.3 \times 10^{-2} = -2.3 \times 10^{-2} \text{ }^{\circ}\text{C.}$$

 14. $\Delta T_b = 2 \text{ }^{\circ}\text{C}; \quad m_a = 2.5 \text{ g}$
 $m_{\text{solvent}} = 100 \text{ g}$
 $K_b = 0.76 \text{ K. kg. mol}^{-1}$
 $P_{\text{solution}} = ?$

$$\Delta T_b = K_b \times m$$

$$2 = 0.76 \times m \quad \therefore \quad m = \frac{2}{0.76}$$

$$\frac{P^0 - P}{P} = m \times M \times 10^{-3} \quad \therefore \quad \frac{760 - P}{P} = \frac{2}{0.76} \times 18 \times 10^{-3}$$

$$760 - P = \frac{36}{760} P \quad \therefore \quad 760 = \frac{796}{760} P$$

$$\therefore P = 760 \left(\frac{796}{760} \right) \text{ torr} = 725.6 \text{ torr} \approx 724 \text{ torr}$$

 15. $\Delta G = -ve, \quad \Delta S_{\text{system}} = +ve \quad \text{Always for solution formation.}$
 $\Delta S_{\text{surr.}} = 0$

No heat exchange between solution and surrounding.

 $\Delta H = 0 \quad \text{For ideal solution.}$

$$m_0(1 - \alpha) \quad m_0\alpha \quad 2m_0\alpha \quad ; \quad m = m_0(1 + 2\alpha)$$

$$\therefore m = m_0(1 + 2 \times 0.5) = 2m_0 \quad (\text{as given})$$

$$\frac{(-\Delta T_f)_{\text{observed}}}{(-\Delta T_f)_{\text{undissociated}}} = i = \frac{m}{m_0} = 2$$

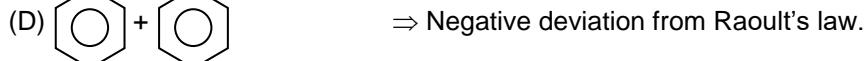
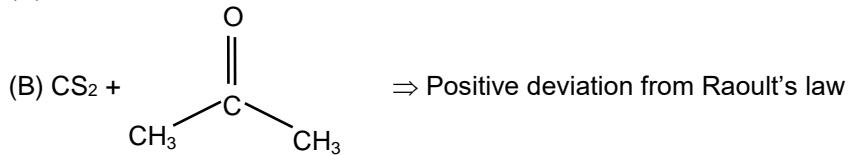
 17. $\Delta T_f = K_f \times i \times m$

$$0.0558 = 1.86 \times i \times 0.01$$

$$i = 3$$

Given complex behaves as a strong electrolyte

$$\alpha = 100 \%$$



 $n = 3$ (no. of particles given by complex)

 $\therefore \text{complex is } [\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$

 no. of Cl^- ions in the co-ordination sphere of the complex = 1

18. (A) $\text{CCl}_4 + \text{CH}_3\text{OH} \Rightarrow$ Positive deviation from Raoult's law

19. For a mixture of two liquids L and M,

For ideal solution obey Raoult's law

$$P_L = (1 - X_M)P_L^0 = P_L^0 - X_M P_L^0$$

Graph between P_L & X_M has intercept = P_L^0 & slope = -ve

But graph representing +ve deviation from Raoult's law therefore $M - L < M - M$ or $L - L$

Point Z represents intercept which is P_L^0 when $X_L \rightarrow 1$

20. As T increase, V.P. increases. So C & D options get rejected.

$$\Delta T_f = K_f \times m$$

$$273 - T_f' = 2 \times \frac{34.5/46}{0.5}$$

$$\therefore T_f' = 270 \text{ K}$$

21. $p_T = p_A^0 X_A + p_B^0 X_B$

$$45 = 20(0.5) + P_B^0(0.5)$$

$$P_B^0 = 70$$

$$22.5 = 20 X_A + 70(1 - X_A)$$

$$50X_A = 47.5$$

$$X_A = \frac{4.75}{5} = 0.95$$

$$X_B = 0.05$$

$$\frac{X_A}{X_B} = 19$$

22. $2 = 2 (K_b)_x m$

$$1 = 2 (K_b)_y m$$

$$\frac{(K_b)_x}{(K_b)_y} = 2$$

$$\Delta(T_b)_x = \left(1 - \frac{\beta}{2}\right) (K_b)_x m \quad \dots(1)$$

$$\Delta(T_b)_y = \left(1 - \frac{0.7}{2}\right) (K_b)_y m \quad \dots(2)$$

On taking the ratio of eq. no. (1) & (2)

$$\Rightarrow 3 = \frac{1 - \frac{\beta}{2}}{0.65} \times 2$$

$$1 - \frac{\beta}{2} = 1.5 \times 0.65$$

$$\beta = 0.05$$

23.
$$\frac{P^0 - P_s}{P_s} = i \left[\frac{n_{\text{solute}}}{n_{\text{solvent}}} \right] \quad \frac{P^0 - P_s}{P_s} = i \frac{n_{\text{विलेय}}}{n_{\text{विलायक}}}$$

$$\frac{650 - 640}{640} = 1 \times \frac{0.5 \times 78}{M \times 39} \Rightarrow M_{\text{solute}} = 64 \text{ g}$$

$$\Delta T_f = K_f \times m = 5.12 \times \frac{0.5 \times 1000}{64 \times 39} \Rightarrow \Delta T_f = 1.02564$$

PART - II

SOLUTION OF OFFLINE PROBLEMS

1. Moles of urea = $\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 10^{-3}$ moles

$$\text{Concentration (molarity) of solution} = \frac{10^{-3}}{100} \times 1000 = 0.01 \text{ M.}$$

2. Elevation in boiling point is a colligative property which depends upon the number of solute particles. Greater the number of solute particles in a solution, higher the extent of elevation in boiling point.

$$\text{Vant Hoff factor (i)} = \frac{1 - \alpha + 2\alpha + \alpha}{1} = 1 + 2\alpha.$$

4. According to Raoult's law equimolal solutions of all the substances in the same solvent will show equal elevation in boiling points as well as equal depression in freezing point.

5. $P_B = P^0_B X_B \quad P^0_B = 75 \text{ torr}$

$$X_B = \frac{78/78}{(78/78) + (46/92)} = \frac{1}{1 + 0.5} = P_B = 75 \times \frac{1}{1.5} = 50 \text{ torr.}$$

6. According to Raoult's law

$$P = P_A + P_B = P^0_A X_A + P^0_B X_B \quad \text{or} \quad 290 = P^0_A \times (0.6) + 200 \times (1 - 0.6)$$

7. Isotonic solutions have same osmotic pressure.

$$\pi_1 = C_1 RT, \pi_2 = C_2 RT$$

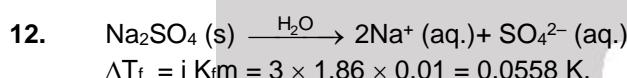
For isotonic solution, $\pi_1 = \pi_2$

$$\therefore C_1 = C_2.$$

$$\text{or } \frac{1.5/60}{V} = \frac{5.25/M}{V} \quad [\text{where } M = \text{molecular weight of the substance}]$$

$$\text{or } \frac{1.5}{60} = \frac{5.25}{M} \text{ or } M = 210.$$

8. $P_A = P^0_A \times X_A = 17.5 \times \frac{178.2/18}{\frac{178.2}{18} + \frac{18}{180}} = 17.325$


9. $P_{\text{total}} = P_A^0 x_A + P_B^0 x_A$
 $760 = 520 x_A + 1000 (1 - x_A)$
 $760 = 520 x_A + 1000 - 1000 x_A$
 $x_A = 0.5$
 mol % = 50%

10. The solution is non-ideal, showing +ve deviation from Raoult's Law.

11. $P_{\text{total}} = P_A^0 X_A + P_B^0 X_B = P_A^0 \times \frac{1}{4} + P_B^0 \times \frac{3}{4} = 550 \Rightarrow P_A^0 + 3P_B^0 = 550 \times 4 \quad \dots \text{(i)}$

Similary, $560 = P_A^0 \times \frac{1}{5} + P_B^0 \times \frac{4}{5} \Rightarrow P_A^0 + 4P_B^0 = 560 \times 5 \quad \dots \text{(ii)}$

eq. (ii) – eq.(i)
 $P_B^0 = 560 \times 5 - 550 \times 4 = 600$
 so, $P_A^0 = 400$.

13. $P_T = X_{\text{Heptane}} P_A^0 + X_{\text{Octane}} P_B^0$
 $= \frac{0.25}{0.557} \times 105 + \frac{0.307}{0.557} \times 45$
 $47.127 + 24.80 = 71.92 \approx 72 \text{ kPa}$

14. $\Delta T_f = i \times k_f \times m$
 $2.8 = 1 \times 1.86 \times \frac{x}{62 \times 1} \quad x = \frac{2.8 \times 62}{1.86} = 93 \text{ g}$

15. $0.5 \text{ M C}_2\text{H}_5\text{OH} (\text{aq})$ $0.1 \text{ M Mg}_3(\text{PO}_4)_2 (\text{aq})$
 $i = 1$ $i = 5$
 effective molarity = 0.5
 $0.25 \text{ M KBr} (\text{aq})$ $0.125 \text{ M Na}_3\text{PO}_4 (\text{aq})$
 $i = 2$ $i = 4$
 effective molarity = 0.5 M
 Hence all colligative properties are same.

Note : This equation is solved by assuming that the examiner has taken $\text{Mg}_3(\text{PO}_4)_2$ to be completely soluble. However the fact is that it is insoluble (sparingly soluble).

16. $\frac{P_0 - P_S}{P_S} = \frac{n}{N}$
 $\frac{185 - 183}{183} = \frac{1.2/M}{100/58}$
 $M \approx 64 \text{ g/mol}$

17. Moles of glucose = $\frac{18}{180} = 0.1$ (Assume that glucose is added at boiling point of water)

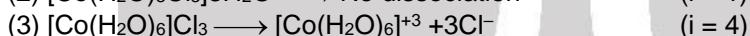
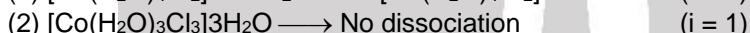
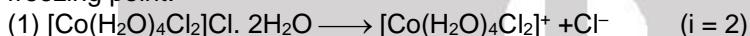
Moles of water = $\frac{178.2}{18} = 9.9$
 $\Rightarrow n_{\text{Total}} = 10$
 $\Rightarrow \frac{\Delta P}{P^0} = \frac{0.1}{10}$
 $\Delta P = 0.01 P^0 = 0.01 \times 760 = 7.6 \text{ torr}$
 $P_S = 760 - 7.6 = 752.4 \text{ torr}$

18. $\Delta T_f = 0.45$

$$m = \frac{\left(\frac{0.2}{60}\right) \times 1000}{20} = \frac{1}{6}$$

$$K_f = 5.12 \text{ K kg/mol}$$

$$i = 1 + \left(\frac{1}{n} - 1\right)\beta \quad (n = 2) = 1 - \frac{\beta}{2}$$




$$\text{Now, } \Delta T_f = i K_f m$$

$$0.45 = \left(1 - \frac{\beta}{2}\right)(5.12)\left(\frac{1}{6}\right)$$

$$\Rightarrow \beta = 0.94$$

$$\therefore \text{ % Association} \approx 94\%$$

19. The complex having minimum value of vant Hoff's factor (i) will give minimum concentration and highest freezing point.

SOLUTION OF ONLINE PROBLEMS

4. $x_{\text{Benzene}} = \frac{1.5}{5} = 0.3, x_{\text{Toluene}} = 0.7$

$$\Rightarrow P_T = 74.7 \times 0.3 + 0.7 \times 22.3 = 22.41 + 15.61 = 38.02 \text{ torr}$$

$$\text{and } y_{\text{Benzene}} = \frac{22.41}{38.02} = 0.589$$

5. Benzene is non-polar solvent.

6. According to Henery law

$$\frac{P_1}{P_2} = \frac{S_1}{S_2} \quad \therefore S_1 \text{ & } S_2 \text{ are solubility of gas (g/L)}$$

$$\frac{500}{750} = \frac{0.01}{S_2}$$

$$\therefore S_2 = \frac{750 \times 0.01}{500} = 0.015 \text{ g/L}$$

7. For MX_2 type salt

$$\text{Vant factor (i)} = 1 + 2\alpha = 2 \quad \Rightarrow \quad \alpha = 0.5$$

8. $\Delta T_f = imk_f$

$$3.82 = [1 + (3-1) \cdot 815]m \times 1.86$$

$$= \frac{3.82}{2.63 \times 1.86}$$

$$= \frac{3.82}{2.63 \times 1.86} = \frac{5}{142} \times \frac{1000}{x}$$

$$x = 45 \text{ g}$$

9. Apply Raoult's law :

$$\begin{aligned} P_{\text{Total}} &= X_A P_A^0 + X_B P_B^0 \\ &= \left(\frac{0.1}{0.1+0.1} \right) \times 415 + \left(\frac{0.1}{0.1+0.1} \right) \times 200 \\ &= 307.5 \text{ mm Hg} \end{aligned}$$

$$\text{Mole fraction of CHCl}_3 \text{ in vapour form (Y}_B\text{)} = \frac{X_B X_B^0}{P_{\text{Total}}} = \frac{0.5 \times 200}{307.5}$$

10. Mol fraction in X solvent

$$X_{\text{solute}} = \frac{5}{5 + \frac{1000}{M_x}} = \frac{5M_x}{1000}$$

Mol fraction in Y solvent

$$X_{\text{solute}} = \frac{5}{5 + \frac{1000}{M_y}} = \frac{5M_y}{1000}$$

$$\text{Ratio of RLVP in both solutions } \frac{m}{1} = \frac{M_x}{M_y} = \frac{3}{4}$$

11. $\frac{P^0 - P_s}{P_s} = \frac{n}{N}$

$$\frac{100P - 75P}{75P} = \frac{50}{1}$$

$$\frac{25}{75} = \frac{W}{50}$$

$$W = \frac{50}{3} \text{ g}$$

12. Value of K_H decrease when solubility of gas increases

13. Let x gram water is separated out

$$\Delta T_f = K_f m$$

$$10 = 1.86 \times \frac{1 \times 1000}{(250 - x)}$$

$$\text{or, } 2500 - 10x = 1860$$

$$\text{or, } 10x = 640$$

$$\text{or, } x = 64 \text{ g.}$$

14. $\frac{x_A}{x_B} = \frac{P_A^0 x'_A}{P_B^0 x'_B} = \frac{7 \times 10^3 (0.4)}{12 \times 10^3 (0.6)} = \frac{28}{72} = \frac{7}{18}$

x'_A & x'_B are mole fraction in liquid state

$$x_A = \frac{7}{25} = 0.28; \quad x_B = \frac{18}{25} = 0.72$$

15. $\Delta T_b = ik_b m \Rightarrow 2 = ik_b \times 1 \quad \dots \dots \dots (1)$

$$\Delta T_f = ik_f m \Rightarrow 2 = ik_f \times 2 \quad \dots \dots \dots (2)$$

1 / 2

$$1 = \frac{k_b}{2k_f}$$

$$k_b = 2 k_f$$

16. Freezing point of milk = -0.5°C $\therefore \Delta T_f = 0.5^\circ\text{C}$
 Freezing point of diluted milk = -0.2°C $\therefore \Delta T_f = 0.2^\circ\text{C}$

$$\frac{(\Delta T_f)_i}{(\Delta T_f)_{ii}} = \frac{0.5}{0.2} = \frac{K_f m}{k_f m}$$

Both has same amount of solute. Let that is x mole.

$$\frac{0.5}{0.2} = \frac{x \text{ mole} \times W_2}{W_1 \times x \text{ mole}}$$

$$\frac{5}{2} = \frac{W_2}{W_1}$$

$$W_2 = \frac{5}{2} W_1$$

17. $\text{K}_2[\text{HgI}_4] \longrightarrow 2\text{K}^+ + [\text{HgI}_4]^{-2}$; $n = 3$
 $i = 1 + (3 - 1) \times 0.4$
 $= 1 + 2 \times 0.4 = 1.8$

18. $(\Delta T_f)_X = (\Delta T_f)_Y$

$$k_f m_X = k_f m_Y$$

$$\frac{4 \times 1000}{A \times 96} = \frac{12 \times 1000}{M \times 88}$$

$$M = 3.27A \approx 3A$$

19. $\begin{array}{rcccl} 2A & \longrightarrow & (A)_2 & & \\ 1 & & - & & \\ 1-0.8 & & \frac{0.8}{2} & & \end{array}$

$$\Delta T_f = K_f \times i \times m$$

$$2 = 5 \times 0.6 \times \frac{w}{122} \times \frac{1000}{30} \Rightarrow w = 2.44 \text{ g}$$

20. $P_T = X_A P_A^\circ + X_B P_B^\circ$
 $= 0.5 \times 400 + 0.5 \times 600$
 $= 500 \text{ mm of Hg}$

$$\frac{1}{P_T} = \frac{y_A}{P_A^\circ} + \frac{1-y_A}{P_B^\circ}$$

$$\frac{1}{500} = \frac{y_A}{400} + \frac{1-y_A}{600}$$

$$y_A = 0.4 \text{ & } y_B = 1 - 0.4 = 0.6$$

21. $P_{\text{gas}} = K_H \cdot x_{\text{gas}}$
 $P_{\text{gas}} = K_H \cdot (1 - x_{\text{H}_2\text{O}})$
 $P_{\text{gas}} = K_H - K_H \cdot x_{\text{H}_2\text{O}}$
 $y = c + mx$

22. Mass of fatty acid which is added over watch glass = $\frac{0.27 \times 0.1}{100} = 2.7 \times 10^{-2}$

$$\text{Volume of fatty acid} = \frac{2.7 \times 10^{-2}}{0.9} = 3 \times 10^{-2}$$

$$\text{Total Area of glass plate} = \pi r^2 = 3 \times [10]^2 = 300 \text{ cm}^2$$

$$\text{Volume} = \text{Area} \times \text{height}$$

$$3 \times 10^{-2} = 300 \times \text{height}$$

$$\text{Height of the layer} = 10^{-4} \text{ cm} = 10^{-6} \text{ m}$$

23. $\pi_{xy} = 4\pi_{\text{BaCl}_2}$

$$i[XY] = 4 \times i \times [\text{BaCl}_2]$$

$$\Rightarrow 2 \times [XY] = 4 \times 3 \times 0.01$$

$$\Rightarrow [XY] = 0.06 \text{ M}$$

24. Mole fraction of more volatile component increase in vapour phase. ($P_N^{\circ} < P_M^{\circ}$)

25. $\Delta T_f = iK_f m$
 $= 3 \times 4 \times 0.03$
 $= 0.36 \text{ K}$

26. $\frac{P^0 - Ps}{P^0} = \frac{n}{n+N}$

$$\text{Lowering in V.P.} = P^0 \times \frac{n}{n+N}$$

$$= 35 \times \frac{\frac{0.6}{60}}{\frac{0.6}{60} + \frac{360}{18}} = 0.017 \text{ mm of Hg.}$$

27. $(\Delta T_b)_A = (K_b)_A \times m_A$

$$(\Delta T_b)_B = (K_b)_B \times m_B$$

$$\frac{(\Delta T_b)_A}{(\Delta T_b)_B} = \frac{1}{5} \times \frac{\frac{1}{\text{M.W.}} \times \frac{1000}{100}}{\frac{1}{\text{M.W.}} \times \frac{1000}{100}} = \frac{1}{5}$$

28. $\pi = CRT$

$$= \left[\frac{(n_1 + n_2) \times 1000}{V} \right] RT = \left[\left(\frac{0.6}{60} + \frac{1.8}{180} \right) \times \frac{1000}{100} \right] \times 0.082 \times 300$$

$$= [(0.01 + 0.01) \times 10] \times 0.082 \times 300 = 4.92 \text{ atm}$$